ReLISH: Reliable Label Inference via Smoothness Hypothesis
نویسندگان
چکیده
The smoothness hypothesis is critical for graph-based semi-supervised learning. This paper defines local smoothness, based on which a new algorithm, Reliable Label Inference via Smoothness Hypothesis (ReLISH), is proposed. ReLISH has produced smoother labels than some existing methods for both labeled and unlabeled examples. Theoretical analyses demonstrate good stability and generalizability of ReLISH. Using real-world datasets, our empirical analyses reveal that ReLISH is promising for both transductive and inductive tasks, when compared with representative algorithms, including Harmonic Functions, Local and Global Consistency, Constraint Metric Learning, Linear Neighborhood Propagation, and Manifold Regularization.
منابع مشابه
Compact Relaxations for MAP Inference in Pairwise MRFs with Piecewise Linear Priors
Label assignment problems with large state spaces are important tasks especially in computer vision. Often the pairwise interaction (or smoothness prior) between labels assigned at adjacent nodes (or pixels) can be described as a function of the label difference. Exact inference in such labeling tasks is still difficult, and therefore approximate inference methods based on a linear programming ...
متن کاملSalience Not Status: How Category Labels Influence Feature Inference
Two main uses of categories are classification and feature inference, and category labels have been widely shown to play a dominant role in feature inference. However, the nature of this influence remains unclear, and we evaluate two contrasting hypotheses formalized as mathematical models: the label special-mechanism hypothesis and the label super-salience hypothesis. The special-mechanism hyp...
متن کاملEmpirical Bayesian Test of the Smoothness
In the context of adaptive nonparametric curve estimation a common assumption is that a function (signal) to estimate belongs to a nested family of functional classes. These classes are often parametrized by a quantity representing the smoothness of the signal. It has already been realized by many that the problem of estimating the smoothness is not sensible. What can then be inferred about the...
متن کاملTowards Dependable Robotic Perception a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
Reliable perception is required in order for robots to operate safely in unpredictable and complex human environments. However, reliability of perceptual inference algorithms has been poorly studied so far. These algorithms capture uncertain knowledge about the world in the form of probabilistic belief distributions. A number of Monte Carlo and deterministic approaches have been developed, but ...
متن کاملBayesian Time Series Modelling and Prediction with Long-Range Dependence
We present a class of models for trend plus stationary component time series, in which the spectral densities of stationary components are represented via non-parametric smoothness priors combined with long-range dependence components. We discuss model tting and computational issues underlying Bayesian inference under such models, and provide illustration in studies of a climatological time ser...
متن کامل